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1. Introduction

Emulsions are made by mixing two immiscible phases, preferentially in the presence of an
emulsifying agent. Hence, crude oil production is invariably accompanied by water in mature
oil reservoirs where the formation of stable water-in-oil (W/O) emulsions are frequently
encountered [1]. The dispersion of water droplets in oil is facilitated by the presence of
interfacial active agents in the crude oil such as asphaltenes, waxes, resins and naphthenic
acids. The content of these natural emulsifiers is more abundant in heavy than in light crude
oils, altogether with a specific density closer to water that difficult water separation that favor
the formation of more stable emulsions in heavy crude oils [2].

The presence of water causes several operational problems like corrosion in equipments and
pipelines, and generally increases the cost of oil production. Therefore, water must be
separated from crude oil before refining process [3]. There are several physical methods
(thermal, mechanical, electrical and chemical) to break water/oil emulsions. However,
chemical demulsification by adding demulsifiers is still one of the most frequently applied
industrial method to break crude oil emulsions [4]. The latter are generally combined with
physical methods to accelerate the demusification process [5].

Currently most of the recoverable crude oil around the world is heavy crude, i.e. specific
density equal or lower than 20 API. Their composition complexity and high viscosity makes
them difficult and expensive to produce and transport through pipeline because of their low
mobility and flowability. Different strategies to facilitate the handling and transport of such
crude oils are the dilution with condensates or lighter oils, the use of flow improvers and drag
reducing additives, and the formation of oil in water emulsion (O/W), known as inverse
emulsions, to increase the crude oil fluidity [6].
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The formation of O/W emulsions is competitive when compared to conventional technology.
However, this approach requires water separation and conditioning prior to crude oil
processing and refining [7]. Thus, the demulsification process is important to break direct
emulsions, more commonly W/O emulsions in order to avoid operational problems caused by
the presence of water in the refining process. Secondly, demulsification is needed to break
inverse O/W emulsions, that may also be formed naturally, but most commonly promoted as
a method for fluidizing heavy crude before pipelining [8].

In this regard, ionic liquids (ILs) have been widely studied in the last two decades because of
their unique properties, as an ecological alternative to solvents, cosolvents and catalysts in
organic synthesis [9], and in the chemical industry [10]. Since they have a very low vapor
pressure, thermal stability and non-flammability, they have been considered as “green,
ecofriendly chemicals” [11]. ILs have found a variety of applications in the oil industry, such
as pollutant removal, corrosion inhibitors and viscosity reducers [12-14]. ILs have found also
wide applications as surfactants [15-16], and recently the application of ILs as demulsifiers for
both W/O and O/W in petroleum industry have been described [17-19].

The purpose of this work is to share the qualitative perspective of ILs applications as surfac‐
tants and specially their applications as demulsifiers of petroleum emulsions. The chapter is
then divided into two parts. The first part involves a review about generalities about surfac‐
tants, theories of emulsion and demulsification, variability of applied chemicals, emulsion’s
formation, type of emulsion, factors affecting the emulsion’s stability, chemical demulsifica‐
tion, and proposed mechanisms for emulsion’s breaking. In the second part, we discuss the
ILs applications as surfactants with focus as demulsifiers of both O/W and W/O emulsions for
oilfield applications. The effect of microwave irradiation on breaking crude oil emulsions in
conjugation with ionic liquids is also discussed.

2. Theory about emulsions

2.1. Emulsion formation

An emulsion is generally defined as a system in which a liquid is distributed or dispersed
relatively in the form of droplets in another substantially immiscible liquid. An emulsion is a
lyophobic colloid, i.e. a sol that cannot be formed by spontaneous dispersion. The emulsions
are thermodynamically unstable, but they may be kinetically stabilized by the presence of an
emulsifying agent or surfactant. The latter forms a surface film on the existing interface
between each droplet and the continuous medium, thereby reducing interfacial tension and
preventing coalescence.

When a system containing enough surfactant, water and oil is subjected to mixing, one of the
phase is preferentially dispersed as droplets into the other and resulting in an emulsion [20].
The mission of the surfactant is to facilitate the extension of the interface during the formation
of the emulsion, and secondly, stabilizing the emulsion by retarding the coalescence of
dispersed phase droplets. The surfactant possesses an amphipathic nature, which allows
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locating at the interface between each droplet and the continuous medium and thereby
reducing interfacial tension and preventing coagulation.

There are three minimal requirements to form an emulsion:

• Two immiscible liquids such as water and oil.

• Enough shear force provided by mixing to disperse one liquid into droplets in the other.

• An emulsifying agent to allow reduction of the free surface energy and stabilize the
dispersed phase.

The nature of dispersion and continuous phases may be more complex as is the case of multiple
emulsions. By instance, the dispersion of oil droplets into segregated water phases that in turn
are dispersed in a continuous oil phase (oil/water/oil, O/W/O emulsion). The petroleum
industry uses to classify direct emulsions (Figure 1), i.e. water-in-oil emulsions, as hard and
soft. By definition a hard emulsion is very stable and difficult to break, mainly because the
dispersed water droplets are very small. Moreover, a smooth emulsion or dispersion is
unstable and easy to break. The inverse or oil-in-water emulsions are also present but more
like a complex emulsion rather than it self. Emulsions are difficult to treat from the operational
point of view and cause several problems, including difficulties to separate gas/oil phases,
crude out of specification, generate high pressures in pipes and also because water contains
many dissolved salts causing severe corrosion problems in pipelines, storage tanks and
equipment.

When water droplets of large diameter are present (> 100 microns), they are often easily
removed by gravitational force that favor coalescence and formation of a water continuous
phase. The water that is separated in less than five minutes is usually called free water. The
amount of water that remains emulsified may vary widely from 1 to 60% by volume. In case
of medium and light crude oils (> 20 ° API), emulsions typically contain 5 to 20% by volume
of water, while 10 to 35% water may still be present in heavy and extra heavy oil (<20 ° API).

Emulsions can also be classified according to their dispersed phase:

• Between 0 and 5% of dispersed phase, the emulsions present droplets that have no direct
interactions with each other..

• Between 5 to 30% of dispersed phase, droplets have some interactions with each other but
emulsion properties are mainly ruled by the continuous phase.

• Between 30 and 74% of dispersed phase, emulsions are considered as medium dispersed
phase, and their properties show remarkable deviations from Newtonian behavior and rely
heavily on their formulation and emulsification protocol.

• More than 74% of dispersed phase results on an emulsion of high dispersed phase, in which
contact between the droplets is very large, and the emulsion properties are ruled by the
dispersed phase.
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Figure 1. Representative scheme of two type of emulsions, oil-in-water (a) and water-in-oil (b) (oil in black, water in
grey).

2.2. Emulsion stability

Some emulsions are easily broken down into water and oil phases after formation, while others
can persist for days, months or even years. Stability is a consequence of the small droplet size,
the oil/water ratio, the presence of surfactants and factors as temperature, salt content, pH of
water, etc. The processes concerning emulsion breaking may be considered as:

• Creaming: Creaming is the opposite to the sedimentation phenomenon and is the result of
different densities between the two liquid phases which creates a concentration gradient
that moves the light dispersed phase to the top, and virtually no coalescence is present
because the attractive forces are not strong enough to cause aggregation and coalescence.

• Sedimentation: Droplets go to the bottom due to their larger density when compared to the
continuous phase but they retain their integrity and no coalescence is present.

• Coalescence: it occurs when droplets are near enough to others for a certain time and the
attractive forces acting among them cause droplets to merge and form larger drops until a
separated phase occurs (Figure 2).

When the interfacial film between droplets has thinned below a critical thickness, it is broken
and the difference in capillary pressure causes the emulsion to break. So the properties of the
thin film are extremely important for separation. All emulsions except perhaps microemul‐
sions are thermodynamically unstable, but may be relatively stable in the kinetic sense. An
emulsion may be kinetically stable against coalescence but unstable with respect to aggrega‐
tion. The emulsions may be characterized as stable, unstable or mesoestable emulsions.

2.3. Factors affecting the stability of emulsions in petroleum

Some of the most important factors affecting the stability of emulsions are:

• Heavy fraction of crude: Emulsions are stabilized by the presence of emulsifiers that locate
at the water/oil interface and form an interfacial film. Some organic molecules as asphaltenes
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and resins present in the crude can act as natural emulsifiers. These polar compounds tend
to migrate to the oily surface, reduce the interfacial tension and promote the dispersion and
emulsification of water (Figure 3).

Figure 3. a) W/O emulsion. b) Details of the interface of a drop of water forming a stabilized emulsion.

The asphaltenes are complex structures formed by a variety of polyaromatic and polycyclic
compounds. These compounds are attracted by electrostatic forces, mainly π bonds and

Figure 2. Scheme of emulsion breaking adapted from [4].
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hydrogen bonds, that allow an arrangement and packaging that generate clusters with high
stability and with paraffins are mainly responsible for the high viscosity and stability of the
heavy oil emulsions. In the other side, resins are complex molecules with high molecular
weight and soluble in n-heptane but very low soluble in ethyl acetate. The role of these
compounds is not well defined, but some theories consider that associated with asphaltenes
may form micelles that favor emulsion stability. The asphaltene/resin ratio appears to play an
important role in the type of film that forms and consequently are associated with the stability
of emulsions. Other important macromolecules present in the crude oil and especially in some
heavy crude oils are paraffins. Paraffinic compounds with high molecular weight hydrocar‐
bons, known also as waxes, which crystallize when the crude oil is cooled down its cloud point.
It has been found that the addition of a specific amount of asphaltene to a waxy oil promotes
the formation of stable emulsions. Indeed, paraffins may act synergistically with asphaltenes
to produce stable emulsions.

The main factors that can affect the stability of the emulsions are [2]:

• Solids: The presence of finely divided solids in the oily phase favors the stability of emul‐
sions. The effectiveness of the stability of these solids depends on factors such as particle
size, interaction between the particles and wettability of the solid particles. Solid particles
stabilize the emulsion by spreading across the interface.

• Temperature: The temperature can significantly affect the stability of the emulsion. Tem‐
perature affects the physical properties of oil-water interfacial film and the solubility of
surfactants, all of which influence the stability of the emulsion. Probably the most important
effect is related to the viscosity of the phases in the emulsion since it decreases with
increasing temperature. The increase in temperature also causes an increase in the thermal
energy of the droplets and therefore the actual number of collisions between them, which
in turn reduces the interfacial tension and favor the coalescence of the drops. It has been
shown that the increase in temperature causes a gradual destabilization of the oil/water
interface. Compressibility of the interface is also affected by changing the surfactants’s
solubility in the oily or aqueous bulk.

• Drop size: The dispersed droplets into a typical emulsion are found commonly between 1
to 50 microns. Bigger droplets tend to coalescence and resolve into a separated phase. The
smaller the droplets are, the emulsion is more stable and its viscosity increases since the free
volume between droplets diminished.

• pH: The pH of the aqueous phase strongly influences the stability of the emulsion. The
addition of acids or inorganic bases cause ionization of the interfacial film and drastically
changes the physical properties of the film. Acid pHs favor the formation of W/O emulsions,
while basic pHs favor the formation of O/W emulsions.

• Interfacial tension. A substantial reduction of interfacial tension is not sufficient to increase
the stability of the emulsion. It is need also a stabilizing agent that prevent aggregation,
sedimentation, creaming and coalescence.
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• Viscosity. A high viscosity of the continuous phase decreases the diffusion coefficient and
the collision frequency of the droplets, favoring the stability of the emulsion. A high
concentration of droplets also increases the apparent viscosity of the continuous phase and
stabilizes the emulsion. This effect can be minimized by heating the emulsion.

• Phase volume ratio. Increasing the volume of the dispersed phase, droplet number and/or
droplet size favor the probability of collision of droplets and reduce the stability of the
emulsion.

• Interface aging. As the emulsion aged, the interface surfactant adsorption is completed and
due to the lateral interaction between molecules, the rigidity of the interfacial film reaches
a stable value in about 3 to 4 hours. This film or skin around the droplets becomes thicker,
stronger and tougher. Furthermore, the amount of emulsifying agents is increased by
oxidation, photolysis, evaporation or by the action of bacteria.

• Salinity. The brine concentration is an important factor in forming stable emulsions. Fresh
water or brine with low salt promotes emulsion stability. Conversely, high salt concentra‐
tions tend to reduce it.

• Nature of oily phase. An oily phase rich in paraffins does not form stable emulsions, whereas
the presence of polar compounds as naphthenic acid and favor stable emulsions. The
presence of waxes, resins, asphaltenes and solids can influence the stability of the emulsion.

• Density. The net force of gravity acting on a drop is directly proportional to the difference
in densities between the droplet and the continuous phase. The increase in density gap by
increasing the temperature, accelerates the rate of sedimentation or creaming of the droplets
and therefore coalescence.

• The presence of metal ions. Divalent cations such as calcium and magnesium tend to
produce a compactation of the adsorbed film, probably as a result of electrostatic screening
on both sides, provoking the precipitation of insoluble salts in the interface.

• Interfacial rheological properties. Generally, chemical gradients are generated when an
interface with adsorbed surfactant molecules stretches or expands due to external factors
and consequently, the interface presents certain elasticity.

2.4. Demulsification

The demulsification is the breaking of an emulsion and resolution of the phases. This process
has gained importance in the petroleum industry because many crudes from offshore reser‐
voirs contain emulsionated water that must be separated before processing of the crude oil.

The demulsification process can be carried out by four main methods: mechanical, thermal,
electrical, chemical and their combinations. The pH adjustment, voltage application, filtration
and membrane separation are comprised among the available methods. Thermal demulsifi‐
cation may be reached by the use of microwaves [21]. The radiation favors temperature
elevation process by a non-conventional heating mechanism known as dielectric heating.
Many works of demulsification have been focused on the effect of microwave irradiation to
break emulsions [22-27].
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Now, the most common technologies employed in petroleum industry are the combined use
of heat and chemicals designed to neutralize and eliminate the effects of the emulsifying agents.
The selection of a suitable chemical is crucial to the demulsification process. However, this
process is rather an art than a science, because many factors play a role in this very complex
phenomenon. A chemical formulation can exhibit excellent performance for demulsification
of a crude oil and become completely ineffective when there are changes in the composition
of the oil. An emulsifier is usually a formulation of one or more chemicals dissolved in a
suitable solvent. The demulsifiers are commonly polymer chains with ethylene oxide alcohols,
ethoxylated phenols, ethoxylated alcohols and amines, ethoxylated nonylphenol, polyhydric
alcohols and sulfonic acid salts. The more common procedure for selecting a demulsifier is
through bottle tests in the laboratory. These tests allow the selection of right chemicals, evaluate
a suitable formulation and define the conditions of concentration, residence time and process
temperature. Due to the wide variety of components present in the crude oil, it is not surprising
that the performance of demulsifiers is largely dependent on the type of oil and composition,
whereby the performance of a formulation can vary drastically from one oil to another.

2.5. Possible chemical mechanisms for demulsification

The emulsification with the use of chemicals is a very complex phenomenon. Different theories
have been proposed to explain the mechanisms of demulsifier’s action. It is known that
demulsifiers establish an opposite type emulsion that those formed by the natural emulsifiers
(emulsion stabilizers), thereby displacing the emulsifiers of the drop interface, which favors
the coalescence of water or oil droplets. Therefore, the efficiency of demulsifier depends on
their adsorption capacity at the interfase in competition with other surface active species
present in the emulsion.

In 1949, Griffin introduced the concept of Hydrophilic-Lipophilic Balance (HLB) as an
empirical scale to weight the effect of the structural aspect of surfactant molecule and it is
related to the chemical groups that are similar or antagonistic to water [28]. The HLB for
polyethoxylated surfactants defined as 20 times the weight of the part consisting of polyoxy‐
ethylene. For example, for 5 sets of nonylphenol with ethylene oxide, the HLB is 10 and because
this molecule is exactly the same weight of the hydrophilic and lipophilic moiety, a rule has
been established that an HLB ≤ 8 (or HLB ≥ 12) indicate that this is a lipophilic surfactant (or
hydrophilic and this results in a W/O (or O/W emulsion) according to the Bancroft rule. The
HBL has the drawback that it does not take into account parameters such as temperature,
salinity, or the nature of the hydrophilic group so they cannot be used as a parameter for
comparison between different families of surfactants. So it was developed an equivalent taking
into account all these effects through a mathematical equation known as hydrophilic-lipophilic
deviation (HLD). The HLD can take positive or negative values related to the type of O/W or
W/O emulsion. The minimum emulsion stability occurs when the HLD equals zero. The HLD
is the dimensionless version of the SAD (surfactant affinity difference) and developed by
Salager and coworkwers [29-32].

When a surfactant or mixture of surfactants have a high hydrophilic or lipophilic affinity, they
generally give non-stable emulsions, as the surfactant is preferably immersed in the medium
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bulk by having high affinity and preferably not at the interface stabilizing the emulsion.
Moreover, when a surfactant has exactly the same affinity for both phases, also they generate
very unstable emulsions. The emulsion stability is high when the surfactant has a moderate
lipophilicity (for the case of a W/O emulsion) or moderately hydrophilic (in the case of O/W),
which is associated with a HLD of+3 or+4 for the case of a W / O emulsion or-3 to-4 for the case
of an O/W. The affinity of the surfactant by either phase can be manipulated through variations
in the formulation, i.e. by varying the nature of the components and their interaction with the
interface as variation in salinity (salt addition, the electrolyte type and concentration), oil type
(number of carbon atoms of the alkane or equivalent), size of the head and tail of the surfactant,
alcohol type and concentration, temperature and/or pressure.

The HLD expression for a system containing ethoxylated surfactants can be expressed as
following:

HLD = β -kEACN + bS−φ(A) + cTΔT
Where β is a characteristic parameter of the surfactant or surfactant mixture which increases
insofar as this is more lipophilic, EACN is the carbon number of the alkane or oil equivalent if
this is not an alkane, S is salinity and expressed in % by weight of salt in the aqueous phase,
φ (A) is a function of alcohol (type and concentration) which is commonly used as a cosurfac‐
tant and ΔT is the difference in temperature of the surfactant relative to room temperature (25
° C) and k and cT are constants. Thus, if the experiment was carried out using distilled water
in the absence of alcohol and at room temperature, the last three terms in the equation would
be zero and hence the HLD depend only on the characteristics of the surfactant and the
concentration of solvent.

When any of these variables change monotonically (i.e. salt concentration or temperature),
keeping all other variables constant can be studied very promptly the effect of these on the
emulsion stability. Another equation is set to non-ionic surfactants of ethoxylated type, which
can be expressed as follows:

HLD = α – EON + bx S – k x ACN + t (T – 25) + a x A
Where α, k and t are surfactant parameters, EON is the degree of ethoxylation of surfactant,
ACN is the carbon number of the alkane, S and A are the concentration of salt and alcohol, and
T the temperature. The above equation may be described as follows:

HLD = k × β + b × S−k × ACN + t(T −  25) + a × A
Where the parameter β can be defined as:β =  (α−EON) / k,

Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions
http://dx.doi.org/10.5772/59094

313



W/O emulsions naturally occur to the lipophilic nature of the natural surfactants, which have
a HLD value greater than 0, so demulsification essentially involve adding a second surfactant
to displace HLD value to 0. Accordingly, the surfactant to be added should be hydrophilic in
nature and must be added to such a concentration that the mixture to generate a natural
surfactant HLD=0, indicating that has the same affinity for the water than oil.

2.6. Chemical products for demulsification

Usually commercial demulsifiers are mixtures of several components having different
chemical structures and polymeric materials with a broad molecular weight distribution.
Demulsifiers are formed by a 30 to 50% of active material (surfactant) plus the addition of
suitable solvents such as alcohols and aromatic naphtha. Many kind of demulsifiers have been
employed since 1920 as soaps, nafthenic acids and salts, aromatics and alkylaromatic, sulfo‐
nated compounds, sulfonated and castor oils, esters, organic acids, epoxides, block copoly‐
mersof ethylene and propylene oxide, alkylphenol-formaldehyde resins, polyamines, fatty
alcohols, polyesteramines and oxyalkylated amines and mixtures thereof [33]. Figure 4 shows
some structures of commercial chemicals used in the demulsifier formulations in the last
decades. Commercial demulsifiers usually contain one or more of these active ingredients in
a suitable solvent. For polymers, molecular weight and chain distribution plays also an
important role in the demulsifier effects.

O O O

C9H19 C9H19 C9H19

OxP POx POx

EOyH EOyH EOyH

SO3H

C12H25

N N OxP-OyEH
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HEOy-POx

OxP-OyEH

O OHO

n Polyfuntionalized amines with EO/PO
Functionalized EO/PO nonylphenol

Docecylbenzenenesulphonic acid
n m

Block copolymer of ethylene/propylene oxide (EO/PO)

Figure 4. Structures of some commercial chemicals used asa demulsifiers in Petroleum Industry.

2.7. Ionic liquids as surfactants

As described throughout this book, ILs present exceptional properties such as high solvent
abilities, negligible vapor pressures, extremely high electrical conductivities, chemical and
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thermal stability [34-35] that have been exploited in applications as diverse as in organic
synthesis [36-37], catalysis [38-39], biocatalysis [40-41], separations [42], extraction [43],
dissolution [44], polymerization reactions [45] and electrochemistry [46]. In petroleum
industry, ILs have found wide applications as corrosion inhibitors [14, 47], as inhibitors of
asphaltene precipitation [48] and for removing pollutants from refineries feedstocks [13].

Moreover, ILs with long-chain hydrocarbon residues exhibit surfactant properties in water
[49-53] and in other ILs as solvents [54]. ILs have also been widely explored as potential ionic
surfactants with different areas and applications such as extraction of organic compounds,
metal ions and radioactive isotopes [55-56], as template to produce micro/mesoporous
materials [57-58], in microemulsion [59-61]. The surfactant properties of ILs are easily under‐
stood if we consider that these compounds generally have a well-defined structure with
hydrophilic character and another with hydrophobic character, i.e. they are amphipatic.
Moreover, these compounds may be or anionic or cationic nature depending that in which
section of their structure the amphiphilic character is present. Switterion type ILs have also
well studied (Figure 5).

N

N N
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X

X

n N

N N
R
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O3S n
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N N
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SO3
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N R'''R''

R R'N

X
nR''

R R'
O3S n NO2C

n

hydrophilic
region

lipophilic
region

R: short size alkyl chain

Figure 5. Some examples of surfactants ILs.

There is an interesting study about the influence of ionic and non-ionic amphiphiles, i.e.,
Cetyltrimethylammonium bromide (CTAB) and 1-(2-aminoethyl)2-heptadecyl-2-imidazoline
(1), on the pore hierarchy and morphology of siliceous particles synthesized with. The
amphiphile (1) leads to the formation of spherical silica particles of about 250 nm diameter,
while the ionic surfactant CTAB led to porous silica spheres of about 750 nm diameter. A single-
particle analysis using High Resolution Electron Microscopy and Optical Density Transforms
show the inner pore structure of the particles synthesized with CTAB and low molecular
weight alcohols co-surfactants (ethanol and propanol) is oriented along the sphere radius,
while silica particles synthesized with (1) have a random-like pore structure. Both systems
were used as supports for adsorption of a photosensitive spiropyran (i.e., Spiro-6) type
compound (1',3',3'-trimethyl-6-nitrospiro-(2H-1-benzopyran-2,2'-indoline)) and their interac‐
tion with the silica surface was characterized by IR spectroscopy, showing a weak interaction
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with respect to other silicates (lamellar clays). These effects are potentially interesting for
applications on biomarkers, stable photosensitive materials, solid-phase organic synthesis and
dyes [62].

In petroleum industry, surfactant ILs have been explored as efficient chemicals for Enhanced
Oil Recovery (EOR) that is a generic term for techniques that increase the amount of crude oil
that can be extracted from a reservoir. It is estimated that two-thirds of crude oil remains in
oil reservoirs after primary and secondary (water flooding) recovery stage and with the
decrease in world oil reserves and a higher demand for petroleum and its derived products,
the effective exploitation of oil reservoirs has become increasingly important.

EOR-assisted by surfactants is an effective method for recovering the oil from reservoirs that
have lost their drive after the application of primary and secondary recovery methods. In this
sense, ILs have showed good potential as surfactant with this purpose [63-64], thus Lago et al.
showed the suitability of several ILs as effective replacements for conventional surfactants in
EOR [65-66]. The reservoir fluid has been modelled as a ternary system of water (pure water
or aqueous solution of NaCl) plus the IL: trihexyl(tetradecyl)phosphonium chloride plus
dodecane. Determination of its liquid-liquid phase equilibrium indicates the formation of a
Winsor type III system, with a triphasic region and adjacent biphasic regions. The interfacial
tensions in the system corroborate the ability of the IL to act as a surface active agent, as
desirable for its use in an EOR process. A relevant transport property such as viscosity, in
addition to density, has been experimentally measured for the equilibrium phases [65]. The
same research group showed in 2013 that the three-phase system generated when adding
trihexamethyl(tetradecyl)phosphonium chloride to the water-oil mixture remain stable in the
wide range of temperature and in the presence of salt, in contrast with other system, no co-
surfact is required. When the temperature increases, an important decrease of the microemul‐
sion-water/brine interfacial tension was observed [66].

Recently, the application results of ILs was reported, for the first time, at laboratory scale using
a sand-pack column model for EOR. A 2 wt% aqueous solution of 1-ethyl-3-methylimidazo‐
lium tosylate ([C2MIM][OTs]) was used to recover an aromatic oil. The results show that a
flooding processes using only 4 pore volumes (PV) could recover 65.7% (±1.0) of the oil in place,
almost the double of what was recovered with a brine solution (NaCl, 2 wt%). These prelimi‐
nary results, requiring further optimization of the IL characteristics and concentration, and
other process parameters, suggest that water-flooding with aqueous solutions of ILs can
contribute to EOR in mature reservoirs [67].

2.8. Ionic liquids as demulsifiers of emulsions in petroleum industry

ILs have also found application as surfactants in demulsification process for oil field applica‐
tion. As discussed above, crude oil is invariably accompanied by water and formations of stable
W/O emulsions are frequently encountered in the oil industry. These emulsions contain
significant quantities of contaminants, salts and other corrosive compounds and their stability
is increased for heavy and ultra-heavy crude oils due to the content of these natural emulsifiers
that is more abundant than in light crude oils [33].
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Destabilization of emulsions is an important step to obtain water-and salt-free oils, being the
chemical demulsification and desalting the most frequently applied industrial methods to
break crude oil emulsions. This process can be very difficult and non-efficient to demulsify
and desalt water-in-oil emulsions of heavy viscous crude oils, being also time consuming [68].
A study about W/O demulsification for three types of Mexican crude oils was reported using
several surface-active ILs analogues. The efficiency of these ILs was studied using emulsions
of medium, heavy and ultra-heavy crude oils under conventional heating. Some of these
surfactants were able to break water in oil emulsion in heavy and ultra-heavy crude oils. The
effect of microwave irradiation as non-conventional energy source to accelerate and increase
the efficiency of demulsification for heavy crude oil was also demonstrated [69]. Brazilian
researchers have also studied ILs and microwave effect on demulsification of crude oil
emulsions [17]. In their more recent work, they investigated the effect of five ILs, [BMIM]
[NTf2], [OMIM][NTf2], [C12MIM][NTf2], [BPy][NTf2] and [OMIM][OTf] and a set of operation
parameters on the demulsification process, including the heating type (conventional and
microwave), IL concentration (0.6 to 6.2 g/dm-3), effect of alkyl chain length, and effect of cation
and anion type on demulsification efficiency. The results indicated that the demulsification
was favored when more hydrophobic ILs and longer cation alkyl chains were employed, such
as [C12MIM][NTf2], reaching values close to 92% of water removal. Also microwaves in
conjunction with IL showed the highest demulsification efficiency [70]. Flores et al. studied
the anion and cation effect as ammonium type ILs as dehydrating agent of ultra-heavy crude
oil from the experimental and theoretical point of view using series of trioctylammonium
(TOA) ILs containing the anions: Cl-, HSO4

-and H2PO4
-, and other new ammonium salts (OCD)

with HSO4
-, MeSO3

-and MePhSO3
-. According with this study, the ranking of water removal

efficiency for the TOA series at 1000 ppm was Cl-> HSO4
-> H2PO4

-, while for ODC series, the
rankings for efficiency at 360 min were HSO4

-> MeSO3
-. Theoretical studies by means of density

functional theory (DFT) suggested that an increase in the softness and electrophilicity of the
cations correlated with lesser effectiveness as demulsifiers. Finally, the partition coefficient of
the cations showed that if the viscosity of the crude oil is low, it is possible to use ILs with a
low partition coefficient (log P), but if the viscosity is high, the log P of IL should be near to
the [TOA][Cl] value [71].

Ammonium-type IL anionic surfactants have also shown good efficience as demulsifiers of W/
O emulsions. Four amphiphilic cholinium carboxylates were synthesized by ionic exchange
from choline chloride (Vitamin B4) and fatty acid salts under microwave irradiation (Fig. 6).
These environmentally friendly anionic surfactants were evaluated as demulsifiers to break
water in crude oil emulsions using short intervals of microwave dielectric heating to follow
the kinetics of the demulsification and the results of the evaluations were validated and
confirmed by the classical “bottle test” procedure. Choline palmitate showed the best per‐
formance as demulsifier of the heavy Mexican crude oil emulsion [72].

Another application of ILs is on the demulsification of O/W emulsions, or inverse emulsions.
Unlike the W/O emulsion which tend to increase the viscosity, the inverse emulsion are less
common. The continuous phase of such emulsions is water, which substantially reduces the
viscosity of high viscous oils like heavy, extra heavy and bituminous oils and represents an
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interesting alternative for their transportation through pipelines. Nevertheless, crude oils must
be conditionned by removal of water and salts before further refining. Hence, the potential of
aminoacid based ILs as demulsifiers of O/W emulsions was probed to break an emulsion from
heavy crude oil [73]. The aforementioned O/W emulsions were prepared using alkyl-O-
glucoside and-cellobioside biosurfactants [74]. The effect of the addition of the ILs surfactant
GlyC12 (1000 ppm) on the water separation of an O/W emulsion was evaluated using oil bath
or microwave heating at 50 W (Fig. 7). As was observed, microwave heating is more effective
than oil bath heating in terms of rate of demulsification. Indeed, MW heating during two
minutes allowed water separation of 77% and only 37% under oil bath heating. The emulsion
in the presence and in the absence of GlyC12 reaches a water separation of 87% and 89%
respectively after 10 minutes of treatment.

Figure 7. Kinetics of the separated water (WS) from the initial O/W emulsion treated under oil bath (●) and MW heat‐
ing (■); and in the presence of a demulsifier (GlyC12, 1000 ppm) under oil bath (○) and MW heating (∆).

N
OH

Cl

R
O

O K
+ N

OH

R
O

OMW, 2.5 minutes

Choline chloride R = C11H23
R = C13H27
R = C15H31
R = C17H36

Cholinium carboxylates

Figure 6. Microwave-assisted anion exchange to obtain choline carboxylates.
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The addition of the demulsifier increased the water separation efficiency for oil bath heating,
the separated water increased from 30% to 80% after 6 minutes of contact. It is clear that both
demulsifying approaches reached a high percentage of separated water after 10 minutes of
heating when the demulsifier was used. MW heating appears to be a good demulsifying
process for O/W emulsions since water separation occurs rapidly within the first minutes of
heating (Fig. 8) [18].

Figure 8. Photographs showing separated water (WS) from the initial O/W emulsion containing GlyC12 (1000 ppm) at
50 W, 60°C. Initial O/W emulsion before MW irradiation (A), emulsion after MW irradiation during 2 (B), 4 (C), 8 (D),
10 minutes (E).

Figure 9. Surface response of the water content respect to the dosage and chain length of Glycine-based demulsifiers at
60°C.
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We undertook recently a screening of commercial and synthesized emulsifiers and demulsi‐
fiers to develop a comprehensive and environmentally friendly methodology for transporting
ultra-heavy crude oil. For the screening of demulsifiers, a factorial 2k design was employed
and demulsification parameters as temperature, demulsifier concentration and pH were
studied (Fig. 9). A “green” ionic demulsifiers synthesized from glycine have satisfactory
dewatering ability for ultra-heavy crude oil emulsion. When GlyC14 was employed at 900
ppm, the dewatering efficiency reach 89.5% at pH 3. Considering low toxicity surfactants as
emulsifier and demulsifier, an environmentally friendly and technically feasible technology
was develop for transporting EHCO [75].

3. Conclusions

Complex emulsions are present during production and transporting of crude oil affecting
operations in a daily baisis and further petroleum refining. It is important to understant
the emulsion phenomena: formation, stability and rupture; and all the alternatives that exist
to  resolve  and  diminish  this  problem,  including  well-known  technologies  as  well  as
innovatives ones as  the use of  ionic  liquids as  demulsifiers  of  such complex emulsions.
Specially for heavy, extra heavy and non conventional crude oils as shale oil, bitumen, etc.
Then,  ionic  liquids present  very interesting properties  to break out such complex emul‐
sions and resolve in separate aqueous and oily phases. We presented then some current
research on the field but strongly believe that ionic liquid research may go further to develop
greener  chemicals,  like  amino acid-or  sugar-based liquid  ionics;  instead of  conventional
pyridinium or imidazolium-based ones.

Acknowledgements

This work was financially supported by IMP project D.60016.

Author details

Rafael Martínez-Palou and Jorge Aburto*

*Address all correspondence to: jaburto@imp.mx

Biomass Conversion Management. Research Directorate of Hydrocarbon Processing. Mexican
Petroleum Institute (Instituto Mexicano del Petróleo), San Bartolo Atepehuacan, Gustavo A.
Madero, México D.F., México

Ionic Liquids - Current State of the Art320



References

[1] Scharamm LL. Emulsion Fundamentals and Applications in the Petroleum Industry,
Washington DC: American Chemical Society; 1992.

[2] Kokal S. Petroleum Engineering Handbook: General Engineering, Fanchi JR. (Ed.),,
Texas: Society of Petroleum Engineering; 2006.

[3] Goldszal A, Bourrel M. Demulsification of Crude Oil Emulsions:  Correlation to Mi‐
croemulsion Phase Behavior. Industrial Engineering Chemical Research 2000; 39:
2746-2751.

[4] Kokal S. Crude-oil Emulsions: A-State-of-the-Art Review. SPE Production and Facil‐
ilities 2005; February 5-13.

[5] Feng X, Xu MJ. Biodegradable Polymer for Demulsification of Water-in-Bitumen
Emulsions. Energy & Fuels 2009; 23:451-456.

[6] Martínez-Palou R, Mosqueira ML, Zapata-Rendón B, Mar-Juárez E, Bernal-Huico‐
chea C, de la Cruz Clavel-López J, Aburto, J. Journal of Petroleum Science & Engi‐
neering 2011; 75:274-282.

[7] Xu XR, Yang JY, Zhang BL, Gao JS. Demulsification of Extra heavy Crude Oil. Petro‐
leum Science & Technology 2007; 25:1375-1390.

[8] Guerrero S, Parra LJ, Abreu E, Montefusco L, Gil L. Orimulsion. Interciencia 2004;
29:180-181.

[9] Martínez-Palou, R. Microwave-assisted synthesis using ionic Liquids. Journal of Mo‐
lecular Diversity 2010; 14:3-25.

[10] Rogers RD, Seddon KR. (Eds.) Ionic Liquids: Industrial Applications of Green Chem‐
istry. Washington DC, American Chemical Society, 2002.

[11] Rogers RD, Seddon KR, Volkov S. (Eds.). Green Industrial Applications of Ionic Liq‐
uids. (NATO Science Series), Dordrecht, Kluwer Academic Publishers, 2002.

[12] Martínez-Palou R, Flores P. Perspectives of Ionic Liquids for Clean Oilfield Technolo‐
gies. In: Kokorin A (ed.) Ionic Liquids. Theory, Properties and New Approaches. Ri‐
jeka: Intech; 2011. pp. 567-630.

[13] Martínez-Palou R, Luque R. Applications of Ionic liquids for Removing Pollutants
from Refinery Feedstocks: A review. Environmental Energy Science 2014;
7:2414-2447.

[14] Martínez-Palou R, Olivares-Xomelt O, Likhanova N. Environmental Firendly Corro‐
sion Inhibitors. In: Progress in Corrosion Inhibitors. Rijeka: Intech; 2014. pp. 431-465.

Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions
http://dx.doi.org/10.5772/59094

321



[15] Kunz W, Zemb T, Harrar A. Using Ionic Liquids to Formulate Microemulsions: Cur‐
rent State of Affairs. Current Opinion in Colloid & Interfase Science 2012;
17:205-2011.

[16] Qiu Z, Texter J. Ionic Liquids in Microemulsions. Current Opinion in Colloid & Inter‐
fase Science 2008; 13:252-262.

[17] Lemos RBC, da Silva EB, dos Santos A, Guimaraes RCL, Ferreira BMS, Guarnieri RA,
Dariva C, Franceschi E, Santos AF, Fortuny M. Demulsification of water-in-crude oil
emulsions using ionic liquids and microwave irradiation. Energy & Fuels 2010;
24:4439-4444.

[18] Martínez-Palou R, Cerón-Camacho R, Chávez B, Vallejo AA, Villanueva-Negrete D,
Karamath J, Castellanos J, Reyes J, Aburto, J. Demulsification of heavy crude oil in
water emulsion. A comparative study between Microwave and Conventional Heat‐
ing. Fuel 2013; 113:407-414.

[19] Martínez-Palou R, Cerón-Camacho R, Chávez B, Vallejo AA, Reyes J, Chávez B, Gar‐
cia-Caloca G, Bernal-Goicochea C, de la Cruz-Clave J, Aburto, J. Desarrollo de un
proceso integral para el transporte de crudos pesados. Estudio para la formación de
emulsiones O/W mediante biotensoactivos. Revista de Ingeniería Petrolera 2014;
54:233-247 (in Spanish).

[20] Sjöblom J. editor Emulsion and emulsion stability. Surfactant Science serie vol 132,
Boca Raton Fl: CRC Taylor & Francis; 2006.

[21] Martínez-Palou R. Química en Microondas. (E-book). Matthew, NC: CEM Publish‐
ing; 2006. pp. 131-154.

[22] Binner ER, Robinson JP, Silvester SA, Kingman SW, Lester EH. Investigation into the
mechanisms by which microwave heating enhances separation of water-in-oil emul‐
sions. Fuel 2014; 116:516-521.

[23] da Silva EB, Santos D, Brito MP, Guimaraes RCL, Ferrerira BMS, Freitas LS, Campos
MCV, Franceschi E, Dariva C, Santos AF, Fortuny M. Microwave desemulsification
of heavy crude oil emulsions: Analysis of acid species recovered in aqueous phase.
Fuel 2013; 128:141-147.

[24] Anisa ANI, Nour AH. Destabilization of heavy and light crude oil emulsions via mi‐
crowave heating technology: An optimization study. Journal of Applied Science
2011; 11:2898-2902.

[25] Nour AH, Yunus RMA. Continuous Microwave Heating of Water-in-Oil Emulsions:
An Experimental Study, Journal of Applied Science 2006; 6:1868-1872.

[26] Nour AH, Yunus RMA. Comparative Study on Emulsion Demulsification by Micro‐
wave Radiation and Conventional Heating. Journal of Applied Science 2006;
6:2307-2311.

Ionic Liquids - Current State of the Art322



[27] Fortuny M, Oliveira CB, Melo RL, Nele M, Coutinho RC, Santos AF. Effect of salinity,
temperature, water content, and pH on the microwave demulsification of crude oil
emulsions. Energy & Fuels 2007; 21:1358-1364.

[28] Griffin WC. Classification of surface active agents by HLB. Journal of The Society of
Cosmetic Chemists 1949; 1:311-315.

[29] Alvarez G, Poteau S, Argillier JF, Langevin D, Salager JL. Heavy oil-water interfacial
properties and emulsion stability: Influence of dilution. Energy & Fuels 2009;
23:294-299.

[30] Salager JL, Marquez N, Gracia A, Lachaise J. Partitioning of ethoxylated octylphenol
surfactants in microemulsion-oil-water systems: Influence of temperature and rela‐
tion between partitioning coefficient and physicochemical formulation. Langmuir
2000; 16:5534-5539.

[31] Salager JL, Márquez L, Peña AA, Rondón M, Silva F, Tyrode E. Current phenomeno‐
logical know-how and modeling emusion inversion. Industrial Engineering Chemi‐
cal Research 2000; 39:2665-2676.

[32] Salager JL. Microemulsions, In: Broze G. (ed.) Handbook of Detergents-Part A. Sur‐
factant Science Series 82. New York: Marcel Dekker; 1999. pp 253-302.

[33] Kokal S. Crude Oil Emulsion. Petroleum and Engineering Handbook. Richardson
TX: Society of Petroleum Engineering; 2005.

[34] Freemantle M. An Introduction to Ionic Liquids. Cambridge UK: RSC Press; 2009.

[35] Martínez-Palou R. Ionic liquids and Microwave-assisted Organic Synthesis. A
“Green” and Synergic Couple. Journal of Mexican Chemical Society 2007; 51(4):
252-264

[36] Wasserscheid P, Keim W., editors. Ionic Liquids in Synthesis. Wenheim: Wiley-VCH;
2004.

[37] Rogers RD, Seddon KR., editors. Ionic Liquids as Green Solvent: Progress and Pros‐
pects. Boston: American Chemical Society; 2003.

[38] Zhao D, Wu M, Kou Y, Min E. Ionic liquids: Applications in catalysis. Catalysis To‐
day 2002; 74:157-189.

[39] Corma A, García H. Lewis acids: From conventional homogeneous to green homoge‐
neous and heterogeneous catalysis. Chemical Revues 2003; 103:4307-4365.

[40] Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ. Room-temperature ionic
liquids as replacements for organic solvents in multiphase bioprocess operations. Bi‐
otechnology & Bioengineering 2000; 69:227-233.

[41] Sheldon RA, Maderia Lau L, Sorgedrager MJ, van Rantwijk F, Seddon KR. Green
Chemistry 2002; 4:147.

Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions
http://dx.doi.org/10.5772/59094

323



[42] Swatloski RP, Visser AE, Reichert WM, Broker GA, Facina LM, Holbrey JD, Rogers
RD. On the solubilization of water with ethanol in hydrophobic hexfluorophosphate
ionic liquids. Green Chemistry 2002; 4:81-87.

[43] Zhang S, Zhang Q, Zhang ZC. Extractive desulfurization and denitrogenation ofo
fuels using ionic liquids. Industrial Engineering Chemistry Research 2004;
23:614-622.

[44] Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic
liquids. Journal of the American Chemical Society 2002; 124:4974-4975.

[45] Kricheldorf HR, Schwarz G. Cyclic polymides-A comparison of synthetic methods.
High Performance Polymers 2004; 16:543-555.

[46] Yang C, Sun Q, Qiao J, Li Y. Ionic liquid doped polymer light-emitting electrochemi‐
cal cells. Journal of Physical Chemistry B 2007; 107:12981-12988.

[47] Olivares-Xometl O, López-Aguilar C, Herrasti P, Likhanova N, Lijanova I, Martínez-
Palou R, Rivera-Marquez JA. Adsorption and corrosion inhibition performance by
three new ionic liquids on API 5L X52 steel surface in acid media. Industrial Engi‐
neering Chemistry Research 2014; DOI: dx.doi.org/10.1021/ie4035847

[48] Murillo-Hernández J, García-Cruz I, López-Ramírez S, Durán-Valencia C, Domí‐
nguez JM, Aburto J. Aggregation Behavior of Heavy Crude Oil-Ionic Liquid Solu‐
tions by Fluorescence Spectroscopy. Energy & Fuels 2009; 23:4584-4592.

[49] Bowers J, Butts CP, Martin PJ, Vergara-Gutierrez MC, Heenan RK. Aggregation Be‐
havior of Aqueous Solutions of Ionic Liquids, Langmuir 2004; 20:2191-2198.

[50] Sirieix-Plenet J, Gaillon L, Letellier P. Behaviour of a binary solvent mixture consti‐
tuted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and wa‐
ter: Potentiometric and conductimetric studies. Talanta 2004; 63:979-986.

[51] Kaper H, Smarsly BZ. Templating and Phase Behaviour of the Long Chain Ionic Liq‐
uid C16mimCl. Journal of Physical Chemistry 2006; 220:1455-1471.

[52] Thomaier S, Kunz W. Aggregates in mixtures of ionic liquids, Journaol of Molecular
Liquids 2007; 130:104-107.

[53] Hezave AZ, Dorostkar S, Ayatollahi S, Nabipour M, Hemmateenejad B. Investigating
the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]))
on the water/oil interfacial tension as a novel surfactant. Colloids & Surfaces A 2013;
421:63-71.

[54] Smirnova NA, Safonova EA. Miscellization in solutions of ionic liquids. Colloid Jour‐
nal 2012; 74:254-265.

[55] Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Analytica Chimica Acta
2010; 661:1-16.

Ionic Liquids - Current State of the Art324



[56] Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent prog‐
ress from knowldge to applications, Applied Catalysis 2010; 373:1-56.

[57] Zukal A, Thommes M, Cejika J. Synthesis of highly ordered MCM-41 silica with
spherical particles, Micropororous & Mesopororous Materials 2007; 104:52-58.

[58] Wang T, Kaper H, Antonietti M, Smarsly B. Templating behavior of long-chain ionic
liquid in the hydrothermal synthesis of mesoporous silica. Langmuir 2007;
23:1489-1495.

[59] Zech O, Thomaier S, Bauduin P, Rück T, Touraud D, Kunz W. Microemulsions with
an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase,
Journal of Physical Chemistry B 2009; 113:465-473.

[60] Safavi N, Maleki FF. Phase behavior and characterization of ionic liquids based mi‐
croemulsions. Colloids & Surface A 2010; 355:61-66.

[61] Wang A, Chen L, Jianf D, Yan Z. Vegetable oil-based ionic liquid microemulsions
and their potential as alternative renewable biolubricant basestocks. Industrial Crops
& Products 2013; 51:425-429.

[62] Domínguez JM, Rosas R, Aburto J, Terrés E, López A, Martínez-Palou R. Synthesis of
silica spheres with neutral and ionic amphiphiles and their interaction with photo‐
sensitive spiropyrans. Microporous and Mesoporous Materials 2009; 118:121-133.

[63] Benzagouta MS, Al Nashef IM, Karnanda WW, A-Khidir K. Ionic liquids as novel
surfactants for potential use in enhanced oil recovery. Korean Journal of Chemical
Engineering 2013; 30:2108-2117.

[64] Hezave AZ, Dorostkar S, Avatollahi S, Nabipour M, Hemmateeneiad M. Effect of dif‐
ferent families (imidazlolium and pyridonium) of ionic liquids-base surfactants on
interfacial tension wter/crude oil system. Fluid Phase Equilibria 2013; 360:139-145

[65] Lago S, Rodríguez H, Khoshkbarchi MK, Soto A, Arce A. Enhanced oil recovery us‐
ing the ionic liquid trihexyl(tetradecyl) phosphonium chloride: Phase behaviour and
properties. Royal Society of Chemistry Advances 2012; 2:9392-9397.

[66] Lago S, Francisco M, Arce A, Soto A. Enhanced oil recovery with the ionic liquid tri‐
hexyl(tetradecyl) phosphonium chloride: A phase equilibria study at 75°C. Energy &
Fuels 2013; 27:5806-5810.

[67] Pereira JBF, Costa R, Foios N, Coutinho JAP. Ionic liquid enhanced oil recovery in
sand-pack columns, Fuel 2014; 134:196-200.

[68] Sjöblom J, Johnsen EE, Westvik A, Ese MH, Djuve J, Auflem IH, Kallevik H. In: Sjö‐
blom J. (ed.) Encyclopedic Handbook of Emulsion Technology. New York: Marcel
Dekker; 2001 pp. 595-620.

Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions
http://dx.doi.org/10.5772/59094

325



[69] Guzmán-Lucero D, Flores P, Rojo T, Martínez-Palou, R. Evaluation of ionic liquids as
desemulsifier of water-in-crude oil emulsions. Study of microwave effect. Energy &
Fuels 2010; 24:3610-3615.

[70] da Silva EB, Santos D, Alves DRM, Guimaraes RCL, Ferrerira BMS, Guarnieri RA,
Franceschi E, Dariva C, Santos AF, Fortuny M. Demulsification of heavy crude oil
emulsions using ionic liquids, Energy & Fuels 2013; 27:6311-6315.

[71] Flores CA, Flores EA, Hernández E, Castro LV, García A, Alvarez F, Vázquez FS.
Anion and cation effects of ionic liquids and ammonium salts evaluated as dehydrat‐
ing agents for super-heavy crude oil: Experimental and theoretical point of view.
Journal of Molecular Liquids 2014; 196:249-257.

[72] Aburto J, Marquez DM, Navarro JC, Martínez-Palou R. Amphiphilic Choline carbox‐
ilates Ionic Liquids as Demulsifiers of Water-in-Crude oil Emulsions. Tenside Surfac‐
tants Detergents 2014; 51: 314-317.

[73] Cerón-Camacho R, Aburto J, Montiel LE, Flores EA, Cuellar F, Martínez-Palou, R. Ef‐
ficient Microwave-Assisted Synthesis of Ionic Esterified Amino Acids. Molecules
2011; 16:8733-8744.

[74] Cerón-Camacho R, Martínez-Palou R, Chávez-Gómez B, Cuéllar F, Bernal-Huicochea
C, de la Cruz Clavel J, Aburto, J. Synergistic effect of alkyl-O-glucoside and-cellobio‐
side biosurfactants as effective emulsifiers of crude oil in water. A proposal for the
transport of heavy crude oil by pipeline. Fuel 2013; 110:310-317.

[75] J. Reyes, R. Cerón-Camacho, R. Martínez-Palou, D. Villanueva, Alba A. Vallejo, J.
Aburto. Study on the formation and breaking extraheavy crude oil-in-water emul‐
sions. A proposal strategy for transportation of extra heavy crude oils. Unpublished
data.

Ionic Liquids - Current State of the Art326


